
7 Local bifurcation theory

In our linear stability analysis of the Eckhaus equation we saw that a neutral curve is
generated, as sketched again below.

k

R

n=1
σ<0

σ>0

σ=0

As the control parameter R is smoothly varied, the point at which σ = 0 (at any
fixed k) defines the stability threshold or “bifurcation point” at which the base flow
switches from being linearly stable to linearly unstable with respect to perturbations
of wavevector k. As we will show in Sec. 8, in the regime of linear instability, nonlinear
terms in the Eckhaus equation act to restabilise the system somewhat. Because of this,
the final nonlinear state is not too “far away” from the original base state. (Recall the
diagrams on page 3.) To describe the bifurcation fully, these nonlinear effects must
clearly be taken into account.

In this section, we introduce the general theory of bifurcations in the context of
some simpler equations. For our purposes, each of these can be viewed as the simplest
“standard” equation to capture a given type of bifurcation (saddlenode, transcritical
etc.). More fundamentally, though, even the most complicated equations can be shown
to reduce to one of these standard forms when expanded about a bifurcation point.
In Sec. 8 below, for example, we show that the Eckhaus equation exhibits a pitchfork
bifurcation at the Rcm, kcm, described by a simple equation of the form (30).

With these remarks in mind, we now introduce each type of bifurcation in turn.

7.1 The saddlenode bifurcation

Consider the dynamical system defined by

dx

dt
= a − x2, for x, a real. (16)

Here a is a control parameter that can be tuned externally. A steady state solution
(dx/dt = 0) is simply

x = xB = ±
√

a. (17)

Therefore, for

• a < 0 we have no real solutions.

• a > 0 we have two real solutions.

We now consider each of the two solutions for a > 0, and examine their linear stability
in the usual way. First, we add a small perturbation:

x = xB + x̃. (18)

8



Substituting this into the governing equation (16), we get

dx̃

dt
= (a − x2

B) − 2xBx̃ − x̃2. (19)

The term in brackets on the RHS is trivially zero, from (17). At first order in the
perturbation, x̃, we therefore have

dx̃

dt
= −2xBx̃, (20)

with solution
x̃(t) = A exp(−2xBt). (21)

From this, we see that

• for xB = +
√

a, |x̃| → 0 as t → ∞ (linear stability);

• for xB = −√
a, |x̃| → ∞ as t → ∞ (linear instability).

As sketched in the “bifurcation diagram” below, therefore, the saddlenode bifurcation
at a = 0 corresponds to the creation of two new solution branches. One of these is
linearly stable, the other linearly unstable.

u − unstable

s − stable

a

+a1/2

−a1/2

s

u

x

7.2 The transcritical bifurcation

Consider the dynamical system

dx

dt
= ax − bx2 for x, a, b real. (22)

Again, a and b are control parameters. We can find two steady states (dx/dt = 0) to
this system

• x = xB1 = 0 ∀ a, b.

• x = xB2 = a/b ∀ a, b (b 6= 0).

We now examine the linear stability of each of these states in turn, following the usual
procedure.

Starting with state xB1, we add a small perturbation

x = xB1 + x̃. (23)

9



This gives
dx̃

dt
= ax̃ − bx̃2 (24)

with the linearised form
dx̃

dt
= ax̃. (25)

This has the solution
x̃(t) = A exp(at). (26)

At linear order, therefore, perturbations grow for a > 0 and decay for a < 0. So

• state xB1 = 0 is linearly unstable for a > 0, and

• state xB1 = 0 is linearly stable for a < 0.

Now consider the linear stability of the second state xB2. As usual we write

x = xB2 + x̃. (27)

Substituting this into the equation of motion (22) and linearising, we get

dx̃

dt
= ax̃ − 2bxB2x̃

= ax̃ − 2b

(

a

b

)

x̃

= −ax̃. (28)

(Do the linearisation as an exercise.) This has the solution

x̃(t) = A exp(−at), (29)

giving exponential growth for a < 0 and decay for a > 0. Thus we see that

• state xB2 = a/b is linearly unstable for a < 0, and

• state xB2 = a/b is linearly stable for a > 0.

These findings are summarised in the following bifurcation diagram. The bifurcation
at a = 0 corresponds to an exchange of stabilities between the two solution branches.

u − unstable

s − stable

a

x
s

us

ux=a/b

x=0
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7.3 The pitchfork bifurcation

Consider the dynamical system defined by

dx

dt
= ax − bx3 for x, a, b real. (30)

As usual, a and b are external control parameters. Steady states, for which dx/dt = 0,
are as follows:

x = xB1 = 0, (31)

x = xB2 = +
√

a/b for a/b > 0, (32)

x = xB3 = −
√

a/b for a/b > 0. (33)

So states xB2 and xB3 only exist for a > 0 if b > 0; and for a < 0 if b < 0. In drawing
our bifurcation diagrams below, therefore, we will consider the case b > 0 separately
from the case b < 0.

As usual, we now examine the linear stability of each of these steady states in turn.
(This can be done for a general b.) First we write

x = xB1 + x̃ (34)

and find the linearised equation
dx̃

dt
= ax̃, (35)

with the solution
x̃ = A exp(at). (36)

So we see that

• state xB1 = 0 is linearly unstable for a > 0, and

• state xB1 = 0 is linearly stable for a < 0.

The linear stability of states x = xB2 and x = xB3 can be considered together. Setting

x = ±
√

a/b + x̃ (37)

we get, at linear order in x̃, the equation

dx̃

dt
= ax̃ − 3bx2

Bx̃ (38)

with the solution
x̃ = A exp(st) (39)

in which
s = a − 3bx2

B = a − 3b
a

b
= −2a. (40)

Thus we see that

• states xB2 and xB3 are linearly stable for a > 0, and

• states xB2 and xB3 are linearly unstable for a < 0.
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We now collect these results in bifurcation diagrams in the plane x − a. As noted
above, we will do this separately for b > 0 and b < 0. From (32) and (33), we recall
that the states x = xB2 and x = xB3 only exist for a/b > 0. So when b > 0, they
only exist for a > 0. Given this, and the stability properties deduced above, we have
the “supercritical pitchfork” bifurcation diagram sketched below. Nonlinearity has a
stabilising influence in this case. In the particle-in-a-well analogy, this corresponds to
the bottom right sketch on page 2.

u − unstable

s − stable

a

x

s

s

u

s

s

u

s s

b>0   supercritical pitchfork bifurcation

When b < 0, states x = xB2 and x = xB3 only exist for a < 0. Given this, and
the stability properties deduced above, we have the “subcritical pitchfork” bifurcation
diagram sketched below. So nonlinearity has a destabilising influence in this case. In
the particle-in-a-well analogy, the left hand part of this plot corresponds to the bottom
left sketch on page 2.

u − unstable

s − stable

a

x

s

u

u

u

b<0   subcritical pitchfork bifurcation

A physical example – Pitchfork bifurcations are common in physical systems that
possess an underlying symmetry. This is intuitively obvious, because (30) is invariant
under the transformation x → −x. One physical example is the so-called Euler strut.
Here we apply an increasing load to a vertical strut, until it finally buckles. Right and
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left buckling are equivalent: the symmetry x → −x applies. A detailed analysis of the
problem shows that the system does indeed suffer a supercritical pitchfork bifurcation
at the point of buckling. We will discuss some other physical examples in Sec. 8 below.

F

x

F

x

s

s

s

u

7.4 The Hopf bifurcation

Consider the dynamical system defined by the two equations

dx

dt
= −y + (a − x2 − y2)x

dy

dt
= x + (a − x2 − y2)y. (41)

for real x, y, a. There is a trivial steady state at x = y = 0. To examine its linear
stability, we write

x = 0 + x̃, y = 0 + ỹ. (42)

Substituting this into the defining equations (41), and linearising, we get

dx̃

dt
= −ỹ + ax̃,

dỹ

dt
= x̃ + aỹ. (43)

The solution of these linearised equations has the form
(

x̃
ỹ

)

=

(

α
β

)

exp(st) + c.c. (44)

Substituting this into (43), we find the eigenvalue s and the eigenvector (α, β) to be
determined by the following system of linear equations

αs = −β + aα

βs = α + aβ. (45)

(Check this as an exercise.) Eliminating α and β, we find the following equation for
the eigenvalue s at any a:

s2 − 2as + (a2 + 1) = 0, (46)

from which it is easy to show that the eigenvalues are

s = a ± i. (47)

(In principle, we could substitute these back into (45) to find the corresponding eigen-
vectors (α, β), but do not pursue this here.) Given (44) and (47), we see that
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• if a > 0 then ℜ(s) > 0 and so |x̃|, |ỹ| → ∞ (linear instability);

• if a < 0 then ℜ(s) < 0 and so |x̃|, |ỹ| → 0 (linear stability).

The fact that s is complex confers a new dynamical feature not encountered in the
previous examples: that of temporal oscillation. For a < 0, for example, the progress
of x̃ and ỹ in towards the origin is via a damped oscillation, as sketched in the left
hand plot, rather than a straightforward exponential decay.

a>0a<0

y y

xx

As in the other bifurcation examples, the loss of stability at a = 0 gives rise to a new
solution for a > 0. In this case, the new solution is periodic:

x =
√

a cos(t + t0), y =
√

a sin(t + t0). (48)

The system orbits round the “limit cycle” drawn by the dashed line in the right hand
sketch above. The bifurcation diagram is then as follows.

y

x

us
a

Comparing this to the diagrams on page 12, you will notice that it looks a bit like
a higher dimensional version of a supercritical pitchfork bifurcation. Indeed, we can
again classify Hopf bifurcations as supercritical or subcritical, according to whether
the nonlinearity is destabilising or stabilising respectively.
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7.5 Imperfection theory / structural stability

As noted earlier, pitchfork bifurcations are common in systems that possess an under-
lying symmetry: x → −x in the notation used here. In many real situations, however,
the symmetry is only approximate: imperfections lead to a slight difference between
left and right (or whatever the relevant opposite generalised displacements are). In
this section, we are concerned with what happens when such small imperfections are
present.

Consider a slightly imperfect version of (30), in which we choose to set b = 1.

dx

dt
= ax − x3 − δ. (49)

Here δ, which is assumed small, is a measure of the degree of imperfection present.
If δ = 0 we have steady states at x = 0 and x = ±√

a, with a pitchfork bifurcation
at a = 0, as considered previously. When δ 6= 0, however, we have steady states for
a = x2 + δ/x, and the bifurcation diagram is modified as follows:

a

xx

a

x

a

δ<0δ>0δ=0

Consider now a slightly imperfect version of (22), in which we choose to set b = 1:

dx

dt
= ax − x2 − δ. (50)

Again, for δ = 0 we have steady states at x = 0, x = a, and a transcritical bifurcation

at a = 0. For δ 6= 0, however, we have steady states at x = 1

2

[

a ±
√

a2 − 4δ
]

. For

small |δ|, the bifurcation diagram is modified as follows. In particular, we note that if
δ > 0 then there is no steady solution for a2 < 4δ.

xx x

δ=0 δ<0 δ>0

aaa

2δ1/2

Both the pitchfork and transcritical bifurcations are said to be structurally unsta-
ble, since they suffer a qualitative topological change when the governing equation is
perturbed slightly.
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7.6 Bifurcations in the Lorentz equations

In this section, we consider the bifurcations that are exhibited by the Lorentz equations

dx

dt
= σ(y − x),

dy

dt
= rx − y − xz,

dz

dz
= −bz + xy. (51)

As usual, x, y, z are real dynamical variables; and σ, r, b are control parameters, which
we take to be real and positive. Throughout we will assume σ, b to be fixed, and work
with r as the single control parameter to be varied.

The Lorentz equations arise in modelling convection in a vertical torus, sketched
below. We do not discuss this physical motivation any further here: details can be
found in “Physical Fluid Dynamics” by Tritton if you are interested.

0T=T  +   Tz∆ z

In what follows, our aim will be first to find stationary states of the Lorentz equa-
tions and then to examine the linear stability of these states. In doing so, we shall
demonstrate the existence of a supercritical pitchfork bifurcation and subcritical Hopf
bifurcations in the model. Finally, we will briefly discuss the possible scenarios that
arise following the loss of stability at a subcritical bifurcation, in which there is no
“nearby” nonlinear state to settle to.

7.6.1 Stationary states

• By inspection, we can easily see that there is a trivial stationary state

(xB1, yB1, zB1) = (0, 0, 0). (52)

• Another stationary state can be found as follows

dx

dt
= 0 gives x = y,

dy

dt
= 0 gives x(r − 1) − xz = 0,

dz

dt
= 0 gives − bz + x2 = 0. (53)

From the second of these we get z = r − 1. Putting this into the third, we get
x2 = b(r − 1). Combined with the first, x = y, we get finally the stationary state

(xB2, yB2, zB2) = (±
√

b(r − 1),±
√

b(r − 1), r − 1). (54)
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These stationary states are collected on a bifurcation diagram as follows.

x or y

r

r=1

+[b(r−1)]
1/2

−[b(r−1)]1/2

7.6.2 Linear stability

We now examine the linear stability of each of these stationary states. As usual, we
set x = xB + x̃, y = yB + ỹ, z = zB + z̃ and linearise the equations in x̃, ỹ, z̃. This gives

dx̃

dt
= σ(ỹ − x̃),

dỹ

dt
= rx̃ − ỹ − xBz̃ − zBx̃,

dz̃

dt
= −bz̃ + xBỹ + yBx̃. (55)

• For the trivial base state (xB1, yB1, zB1) = (0, 0, 0), these reduce to

dx̃

dt
= σ(ỹ − x̃),

dỹ

dt
= rx̃ − ỹ,

dz̃

dt
= −bz̃. (56)

The dynamics of z̃ is trivial: the third equation gives simple exponential decay,
z̃ = γ exp(−bt) where γ is a constant. The equations for x̃ and ỹ are coupled. We
therefore seek a solution of the form x̃ = α exp(st) and ỹ = β exp(st). In doing
so, we obtain

αs = σ(β − α),

βs = rα − β. (57)

This linear eigenvalue problem has a nontrivial solution if

s + σ −σ
−r s + 1

= 0 (58)

and so if
(s + σ)(s + 1) − σr = 0. (59)

Solving this quadratic equation for s gives

s =
1

2

{

−(σ + 1) ±
√

(σ + 1)2 − 4σ(1 − r)

}

. (60)

This gives ℜs < 0 (linear stability) for r < 1 and ℜs > 0 (linear instability) for
r > 1. The bifurcation at r = 1 is a supercritical pitchfork.
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• We now analyse the linear stability of the state (xB2, yB2, zB2). For r just greater
than 1, we expect this to be linearly stable, consistent with the supercritical
pitchfork bifurcation that we have just discussed above at r = 1. The following
analysis will confirm this, but will also reveal a secondary instability in the form
of a subcritical Hopf bifurcation at a value r = rcrit > 1, to be determined.

Inserting (xB2, yB2, zB2) into (55), and seeking solutions to the resulting equation
set in the form

x̃ = α exp(st), ỹ = β exp(st), z̃ = γ exp(st), (61)

we find the following polynomial equation for the eigenvalue s

s3 + (σ + b + 1)s2 + b(σ + r)s + 2bσ(r − 1) = 0. (62)

One can show that the only possibility in this case is a Hopf bifurcation: i.e. that
the eigenvalue has non-zero imaginary part ℑs 6= 0 at the bifurcation point where
the real part changes sign, ℜs = 0. So we insert a solution in the form s = iω for
ω real into (62). Taking real and imaginary parts, we then get

−ω3 + b(σ + r)ω = 0 (63)

and
−ω2(σ + b + 1) + 2bσ(r − 1) = 0. (64)

From (64) we get

ω = ±
√

2bσ(r − 1)

σ + b + 1
for r > 1. (65)

Combining this with the requirement from (63) that (for ω 6= 0)

ω2 = b(σ + r) (66)

we get
2bσ(r − 1) = b(σ + r)(σ + b + 1), (67)

which can be rearranged to give

rcrit = σ(3 + b + σ)/(σ − b − 1) (68)

This Hopf bifurcation can be shown to be subcritical. Collecting all the above
results together, we get finally the following bifurcation diagram.

x or y

r

r=rr=1 crit

s

s

s

u

u

u

u

u

u = unstable

s = stable
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7.6.3 Dynamical evolution beyond subcritical bifurcations

In the bifurcation diagram sketched above, we discussed the existence of a subcritical
bifurcation at r = rcrit. What happens for r > rcrit, where stability is lost and there is
no “nearby” nonlinear state to go to? In general, several scenarios are possible:

• Evolution to infinity, typically indicating a breakdown of the model.

• Evolution to a non-local fixed point.

• Evolution to a non-local periodic or quasi-periodic state.

• Evolution to a strange attractor, leading to chaotic dynamics.

In the Lorentz equations just discussed, the last of these scenario occurs for r > rcrit.
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